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Saudi Arabia 
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Received 10 September 1993 

Abstract. Within the framework of the J-matrix method of scattering, a given multichannel 
potential is modelled by its restriction on a subspace spanned by a certain set of L' functions. 
The scattering S-matrix is found exactly for this model potential at the Hams eigenvalues 
which result from the diagonalization of the scattering Hamiltonian in the same subspace. 
These values are then analytically continued in the complex energy plane. The poles of the 
S-matrix are then identified with the complex resonance energies. The associated widths for 
each resonance are then extracted from the residues of the S-matrix elements at the desig- 
nated energy. 

Several methods to find the complex resonance energies of a given scattering Hamil- 
tonian are available. One that is well investigated is the complex rotation method [l] 
in which the Hamiltonian is diagonalized in a k i t e  rotated square-integrable basis. 
When the rotation is large enough, the resonance energies are exposed as the stable 
eigenvalues against variation in the sue of the basis set and other free scale parameters. 
Other methods are based on fitting the calculated cross section or related quantities to 
a Breit-Wigner form near the resonance to extract the position and width of the reson- 
ance [2,3] .  The direct method, however, is the one based on the definition of the 
resonances~as the poles of the scattering S-matrix in the complex energy plane. In fact, 
a knowledge of the S-matrix in a certain region of its domain'of analyticity allows the 
analytic continuation to other regions af the complex energy plane. A search of the 
poles of the analytically continued S-matrix leads to the location of the complex reson- 
ance energy whose real and imaginary parts are related to the position and total width 
of the resonance. Furthermore, it is a fact [4] that the S-matrix element Sap, has near 
the resonance energy, E,, the separable form 

where Sk% is the background part of the S-matrix and y. is related to the partial width 
ro via the relation r. = I y a ~ ~ l .  Thus, it is easy to compute the partial width from the 
residues of the S-matrix elements at the designated resonance energy. 

The purpose of this letter is to show that the J-matrix method of scattering is 
well suited to u t i l i  the last scheme described above. Given a multichannel scattering 
'potential, the J-matrix solves the scattering problem exactly for a model potential 
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obtained from the restriction of the matrix representation of the given potential in a 
certain L'-space. The diagonalization'of the full scattering Hamiltonian in the subspace 
where the model potential is non-zero yields what we refer to as the Harris eigenvalues 
and eigenvectors [5 ] .  The S-matrix elements at the Harris energy eigenvalues, as will 
be shown, involve only the associated eigenvectors and some basic J-matrix functions 
[ 6 ] .  These elements are then analytically continued in the complex energy plane to 
extract resonance information as outlined above. The method proposed here completely 
avoids any integration over complex wavefunctions as required by the methods that 
use the definition of the resonance width as the modulus squared of a golden rule matrix 
element of the scattering potentid involving the resonance wavefunction at the complex 
resonance energy [ 7 ] .  Hence, it also avoids any discussion of the difficulty with the 
problem of normalization of such complex wavefunctions [7,8]. 

Consider the scattering of a structureless particle by a target that has M internal 
states labelled by the threshold energies E,,  E*, . . . , E M .  The multichannel Schrodmger 
equation can now be written as 

Nc 

P = l  
c [{Ho - (E-Ep,}S,, + V " 9  ylpn) =o (2) 

where HO is the projectile reference Hamiltonian that may include, in addition to the 
lth partial wave kinetic energy, the Coulomb term (z/r). The indices a and p designate 
the target entrance channel and the exit channel, respectively. 

The feature that characterizes the J-matrix method of scattering is its use of the 
complete set of L2 basis vectors {I qF')):=o, which render the matrix representation of 
the operator 

J'"(E) =Ho-  (E-E, )~  (3) 
tridiagonal. When the scattering potential, VUp, is identically zero, the channels are 
decoupled, and the J-matrix method solves the channel Schrodinger equation exactly 
by giving an explicit representation of the sine-like solution I.YP'"'(E)), and the cosine- 
like solution [ W " ] ( E ) )  as 

ca 

The Fourier-like coefficients {SF)@), c?'(E)),"lo have been found explicitly [6,9]  in 
the case of the Laguerre and oscillator bases 

qF'(r) = (aar)'+i e-h+L?+'(&i) 

qp)(r) = (nor)'+ e;'~sflL'""(~~?) 
or (5) 

n=0,1,2, . . . , respectively. Here A, is a free scale parameter for channel a, and 
L.'(x) is the Laguerre polynomial. 

If, on the other hand, V a p  does not vanish identically, then the J-matrix method 
solves the scattering problem exactly for the model potential, WUp,  which is an approxi- 
mate version of V a p  in the following sense: 

w=p = P,' V"PPp (6 )  
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where P, is the projection operator defined as 
" - 1  

"=a 
P,= c I f p F > < @ ? ) I  (7) 

and P: is its adjoint [lo]. Also, the set 
the basis given in ( 5 ) ;  i.e. 

is the orthogonal complement to 

(8) U )  - (n)  - -(a) (a) - 8  <d Ifpm > - < %  1 %  > -  m .  

Effectively, the matrix representation of Wap is a truncated version of the matrix 
representation of V a p  in function space analogous to truncating the potential to an 
inner configuration space in the R-matrix method of scattering. 

With the proposed solution to the Schrodinger equation (2) written as 

the function, Rp,, is just the reactance matriw from which the scattering S-matrix can 
be constructed as 

S=(l - iR-y1  +iR). (10) 

d R = - B  (11) 

It turns out [ l l ,  121 that R itself is a solution of the equation 

where matrices af and have the explicit forms 

The quantity, g, is the inverse of the total Hamiltonian matrix and gY;?\,Na-l(E) is the 
(Np'l, Na-l) element of the ( f i ,  a )  sub-matrix of g. More explicitly, this element can 
be written as 

is the associated Harris energy eigenvector, while 
M 

is the dimension of the Hamiltonian matrix that is the same as the total number of L2 
functions used to diagonalize the scattering Hamiltonian [9] .  

It is now straightforward to write the scattering S-matrix in terms of the two 
matrices, d and B, as 

s= (@+id)-l(B - i d ) .  (15) 
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Table 1. The resonma energy E, and its lotal width r for the potential 
V= -0.8 studied by Csoto el a1 [ 151 with 2=3.0 and different basis size, 
compared with the results reported in [IS]. 

N E, 

4.0 

r 
~ ~ ~ ~, ,,... _. . , . , ,  ,, ,  , , , ,  " .,.,..,, ... ,....,.,.,,, ,, , , ,  , , ,  , ,  , .  , .  

20 1.6440 0.3744 
25 1.6216 0.2590 
30 1.6321 0.2462 
35 1.6322 0.2458 
[I51 1.6323 0.2458 

The proposed method is based on the fact that this expression for the S-matrix has a 
well-defined limit at the real Harris energy eigenvalues {E#}?-, which involves only 
the Harris eigenvalues, the associated eigenvectors, and the basic J-matrix functions, 
s!?(E) and c?'(E). For example, in the single-channel case, the S-matrix has the 
simple form 

On the other hand, the expression for the S-matrix elements at the Harris energy 
eigenvalues in the multi-channel case can be readily derived [13]. These values are 
continued in the complex energy plane using the point-wise rational fraction technique 
of Schlessinger 1141. A numerical search for the poles of any of the elements of the S- 
matrix yields the complex resonance energies. At a designated resonance energy, E,, 
the partial width, r. associated with channel a is then found from the residue of the 
element, &,(E), at the location of the resonance, namely 

I?, = Em (E- &,)S,,(E) . Ip-i. 
The proposed scheme has been applied to the scattering of an s-wave by the potential 

(18) 

which is known [15] to possess~a resonance at the energy &,=1.632-i0.1229. It is 
usual to parameterize the complex resonance energy E, by E,, the (real) resonance 
energy, and r, its total width, as 

v= e-o.~6++4.0 e-o.a4r' 

E,= E,-iT/2. (19) 

Table 1 gives the calculated values for E, and r, when the Laguerra basis with different 
sizes N=20, 25, 30 and 35 are used with scale parameter A=3.0. The results compare 
well with the reported value [ 151. 

The utility of the scheme to extract resonance information in the multi-channel case 
is exhibited by its application to the scattering of a structureless particle with charge z 
off a two-state target having a unit positive charge and threshold energies E, =O.O and 
Ez=O.l au. The matrix elements of the interaction potential are taken to be the one- 
term separable Yukawas 

yap = I C O )  W < I D I  (19) 
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Table 2. The resonance energy 8. its total width r and the partial widths for model two- 
channel of separable Yukawa potentials using the Laguerre basis with A=O.9 for charge 
z=O and ?.=1.4 for -=-I ,  and different basis size N , = N 2 = N ,  compared with the exact 
results. 

-. - 1  -I  

0 10 3.5040 0.7486 0.0288 ' 0.7098 
15 3.4891 0.7844 0.0310 0.7426 
20 3.4857 0.7681 0.0308 0.7277 
Exact 3.4859 0.7672 0.0307 0.7292 

-I 15 2.9478 0.2036 0.0096 0.2000 
20 2.9483 0.2109 0.0086 02080 
2s 2.9463 0.2162 0.0087 0.2147 
Exact 2.9484 0.2174 0.0085 0.2176 

where 

The potential strengths are chosen to be 

-0.01 0.02 
V=( 0.02 0.075 

with cl=O.10 and c2=0.15. The case of charge z=O and z=-1 has been investigated 
using the Laguerre basis with several values of N I  (taken to be equal to N2)  and A, = 
&=0.9. As this model is soluble. exactly, table 2 compares the results obtained for the 
location of the resonance and the partial widths for the two channels with the exact 
values. It is worth noting that it is a virtue of the J-matrix method of scattering to be 
able to account for the Coulomb term exactly while approximating only the,short-range 
potential V. 
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